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Figure 1: We introduce audio data narratives, which combine textual data representations and data sonifcation. Based on 
identifed design principles and relevant auditory processing characteristics, we propose a heuristics-based approach to auto-
matically generating a narrative given a time-series dataset. 

ABSTRACT 
Online data visualizations play an important role in informing pub-
lic opinion but are often inaccessible to screen reader users. To 
address the need for accessible data representations on the web 
that provide direct, multimodal, and up-to-date access to the data, 
we investigate audio data narratives –which combine textual de-
scriptions and sonifcation (the mapping of data to non-speech 
sounds). We conduct two co-design workshops with screen reader 
users to defne design principles that guide the structure, content, 
and duration of a data narrative. Based on these principles and 
relevant auditory processing characteristics, we propose a dynamic 
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programming approach to automatically generate an audio data 
narrative from a given dataset. We evaluate our approach with 16 
screen reader users. Findings show with audio narratives, users gain 
signifcantly more insights from the data. Users describe data nar-
ratives help them better extract and comprehend the information 
in both the sonifcation and description. 
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1 INTRODUCTION 
Online data visualizations are increasingly used, by both domain 
experts and general audiences, to communicate important insights 
from complex data [44]. Insights gained from data visualization 
can help people make important decisions concerning health (e.g., 
COVID-19) and fnances (e.g., stock trends), guide policy makers 
and scientists in understanding natural phenomena, and support 
communication in journalism, etc. 

Data visualizations are efective in amplifying cognition for data 
exploration [14]. Much of the guidelines and tools used for creating 
data visualizations have been investigated for producing efective 
visual graphics, which poses a signifcant disadvantage to those 
that cannot beneft from visual consumption [26, 65]. Recent work 
has highlighted some of the challenges faced by people who are 
Blind and/or Visually Impaired (BVI), as primarily screen reader 
users, when accessing data visualizations on the web [35, 48, 65, 66]. 
Screen reader users access data visualizations in alternative ways 
using additional and/or diferent modalities (e.g., primarily speech 
and audio). Towards improving screen reader users’ access to non-
visual data representations, in this work, we investigate audio data 
narratives –which combine textual data representations and data 
sonifcation. Our work is driven by the need for accessible data 
representations that provide rich and direct access to the data, are 
updatable, and are robust to access on the web by screen reader 
users [48]. 

Image descriptions, presented as alternative text or alt text, and 
tabular data are among the most common alternative represen-
tations that are accessible to screen reader users on the web, as 
recommended by web accessibility guidelines such as WCAG [74]. 
A limitation of descriptions, or more generally textual representa-
tions, is that they do not provide direct access to the data [65] and 
instead only capture the author’s interpretation of the data, rather 
than supporting the reader in making their own interpretation [66]. 
The level and quality of description can also vary widely [35]. Com-
pounded with these issues is the fact that descriptions often require 
human authoring for them to be done well. With data charts that are 
updated automatically, descriptions can become outdated, creating 
a mismatch with the information presented visually [35, 66]. Lastly, 
textual representations rely on speech modalities which can pose 
a high cognitive load to interpret compared to a direct perceptual 
interface, especially when communicating graphical and highly 
spatial information [28]. 

Data sonifcation is an alternative representation that addresses 
some of the challenges with textual representations by providing 
more direct access to the data. Sonifcation is the mapping of re-
lationships in data into perceived relations in an acoustic signal, 
taking advantage of human’s auditory perceptual capabilities to 
make the relationships comprehensible [34]. Much of the work 
on sonifcation has focused on the low-level data inquiries, by in-
vestigating auditory parameters that make the information more 
perceivable [11, 49, 53, 71]. Considerably less work has focused on 
additional information that contributes to higher level communica-
tion goals (e.g., trend identifcation, predictions, decision-making) 
[5]. Communication is the primary purpose of visualizations pre-
sented for casual consumption such as in the news and articles on 
the web. To improve data communication with audio graphs using 

real-world datasets, more focus is needed on understanding how 
to support the user in interpreting the sounds in the graph and 
making connections between perceptual and conceptual levels to 
gain meaningful insights from the data. 

With visual graphics, several studies have assessed the benefts 
of tight integration between text and visualization through diferent 
spatial layouts, data annotations, and interactions [36, 73, 81]. Data 
narratives are increasingly used to aid narrative communication 
of fndings to non-domain experts by helping to clearly highlight 
and emphasize one or more intended messages in the data [7, 60]. 
Segel et al. describe narrative visualization as "tours through vi-
sualized data" which can be organized in a linear or non-linear 
sequence or "they can also be interactive, inviting verifcation, new 
questions, and alternative explanations" [64]. Data narratives have 
mostly been explored with visual graphics. We posit that efective 
narrative techniques can be extended and applied to also improve 
consumption of audio graphics. A data representation that more 
tightly integrates descriptions as a narrative to guide the reader, 
with data sonifcation to provide direct access to the data, could im-
prove data communication through accessible modalities for screen 
reader users. 

In this work, we introduce audio data narratives and explore 
their benefts and tradeofs for data communication purposes. We 
conducted two virtual workshops with BVI co-designers to defne 
design principles that guide the structure, content, and duration of 
an audio data narrative. As a starting point, our design investigation 
focuses on improving communication of time-series data. Temporal 
data is among the most common data types, typically presented 
visually through a line chart [8], and much prior work investigating 
auditory mappings for sonifcation have set forth guidelines for 
time-series data [12]. We apply these design principles driven by 
fndings from the co-design workshops and prior work in auditory 
perception, to develop a heuristics-based algorithm for automati-
cally generating an audio data narrative given a time-series dataset. 
Figure 1 provides an overview of our approach. 

To evaluate how our approach with audio data narratives sup-
ports data communication of real-world datasets, we conduct an 
evaluation with sixteen BVI screen reader users. We fnd the audio 
data narrative representation, which interleaves both description 
and sonifcation, helps users gain a more complete gist of the data 
when compared to a standard sonifcation representation (control). 
The control representation has the same description but presented 
frst rather than interleaved with the sonifcation. Users draw more 
insights from the sonifcation when consuming the information 
in narrative form. The audio data narratives are especially helpful 
for communicating complex real-world datasets that have more 
than two trend reversals [54], but their benefts are lesser with 
more simple datasets. Users describe their preference for audio data 
narratives in helping them better extract and comprehend the in-
formation in the sonifcation when gaining a gist of the data. Based 
on the evaluation fndings, we believe, audio data narratives are a 
promising approach to provide automatic and up-to-date access to 
data visualizations on the web. 
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2 RELATED WORK 
First, we review important considerations on auditory perception 
to inform efective information encodings. Additionally, we review 
related work on data representations accessible to screen reader 
users focusing on the use of speech and non-speech modalities. 

2.1 Auditory Perception & Encoding 
There are three perceptual tasks central to auditory cognitive pro-
cessing: segmentation, localization, and categorization [46]. Given 
a sensory stream, the auditory system segments multiple poten-
tial sound sources into distinct sources to form a coherent spatial 
scene of the environment. Bregman termed the task of analyzing a 
mixture of sounds auditory scene analysis [9]. The auditory system 
makes sense of an auditory stream by 1) making use of primitive 
processes of auditory grouping, and 2) leveraging known schemas 
incorporating our knowledge of familiar sounds. Both processing 
mechanisms involve bottom-up and top-down processes. This task 
has similarities with visual processing where given a visual scene, 
the visual system must partition the scene into one or more objects 
and foreground and background [40]. However, given the temporal 
nature of hearing and the fact that sounds are transient, supporting 
memory and minimizing workload is particularly important for 
audition [46]. 

In perceiving and categorizing complex patterns as a whole, the 
auditory system, like haptics and vision, has the ability of auditory 
gestalt formation [33]. Organization of sound components into a 
meaningful element is referred to as an auditory object [70]. A 
number of gestalt principles have been shown to apply in auditory 
perception, these include: grouping by timbre, frequency proxim-
ity of sound events, good continuation of sound events, common 
fate, and closure [20, 33]. Efective data representations can take 
advantage of the auditory perceptual system capabilities to make 
the information more comprehensible and reduce workload. 

2.2 Natural Language Descriptions of Data 
Image descriptions or alternative text, often referred to as alt text, 
is the most common way in which BVI users encounter graphical 
representations. Alt text provides a textual alternative to graphical 
content. When accessing an image with alt text, if it is available, it 
is presented to the users’ assistive technology. With screen read-
ers, alt text would be read aloud or, if not present, an image may 
just be announced as "image" with no description of its content. 
The Web Content Accessibility Guidelines (WCAG) provide gen-
eral guidelines for the creation of alt text [74], while the National 
Center for Accessible Media (NCAM) provides more specifc guide-
lines for describing STEM images including data charts [30]. Using 
the NCAM guidelines, Morash et al. developed and evaluated a 
template-based description generator for data charts which lead to 
more standardized word usage and structure [49]. To address chal-
lenges with human authoring of image descriptions and provide 
access to up-to-date information, other approaches have investi-
gated automating image descriptions combining computer vision 
and natural language processing. These approaches have been in-
vestigated for general-purpose images (e.g. in social media, web 
search) [28, 75] as well as for describing specifc types of data visu-
alizations and data features [17, 23, 38, 51]. 

An important consideration with natural language descriptions, 
is that meaningful information may be strongly reader-specifc [47]. 
BVI users’ preferences on image descriptions can vary depending 
on the media source and information-seeking goals [67]. Prior stud-
ies investigating BVI users’ experiences with descriptions of data 
graphics have shown that while descriptions support the user in 
gaining a general overview, they are not comprehensive enough 
in supporting a rich and detailed understanding [65, 77] and that 
there is a gap in supporting the user in confdently generating their 
own insights [66]. Lungard et al. investigate a model of semantic 
content to better guide the content of image descriptions and posi-
tion natural language as a data interface coequal with visualization 
[47]. 

A last consideration with descriptions is that while textual repre-
sentations can accurately describe information, such presentation 
tends to be more verbose, error prone to interpret, and require more 
cognitive load than a perceptual interface that directly renders the 
same information through touch or vision [29]. In this work, we in-
vestigate how shortcomings from natural language descriptions can 
be addressed with complementary information provided through 
data sonifcation (and vice versa). 

2.3 Tabular Data Representations 
For data-driven content, in addition to image descriptions, guide-
lines also recommend including the source data in tabular form. 
While tabular representations provide direct access to the data, 
there are several limitations including: overloaded speech feedback 
[59] and working memory [37 ,68], and lack of an overall picture of 
the data structure [59, 65, 66]. Speech and non-speech sounds have 
been used to improve navigation and comprehension of 2D tabular 
representations by signifcantly reducing workload and providing 
a better overview of the information [37, 59, 68]. To address the 
challenges with textual representations while providing more direct 
access to the data, in this work, we explore audio data narratives 
and assess the benefts of more tightly integrating both textual 
representations and non-speech sounds. 

2.4 Data Sonifcation 
Sonifcation is another method that exploits sound to make data 
graphics more accessible by transforming data relations into per-
ceived relations in an acoustic signal [34]. Sonifcation has been 
investigated for communicating a variety of data such as time-
series data [12, 21, 42], georeferenced data [80], and mathematical 
functions [2, 56, 77]. Recently we have seen a number of these tech-
nologies used in practice such as in the Desmos graphing calculator 
[18] used in education to support both visual and audio representa-
tions of mathematical functions, Apple’s audio graph accessibility 
API [6] that allows specifcation of audio graphs and sonifed data, 
and the SAS Graphics Accelerator [62] which allows importing 
tabular data and exploration through a variety of sonifed graphs. 
Auditory displays can deliver high amounts of detail but there are 
multiple mapping possibilities and few standards in place [63]. In 
considering mapping possibilities for data communication, Sawe et 
al. recommend striking a balance between four key but interrelated 
elements: fdelity to the data, level of complexity, aesthetics, and 
accessibility. Prior works have also investigated the efectiveness of 
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specifc data to audio mappings for sonifcation displays; providing 
recommendations on pitch and time mapping, choosing distinct 
timbres [12], polarity mapping [71], the use of rhythmic clicks for 
context [52], reference tones and white noise [53], and duration 
[53] (See a more general review and guidelines in [34]). Much of 
this work on sonifcation has focused on the low-level data tasks, 
by investigating auditory parameters that make the information 
more perceivable. 

To better support high-level task interactivity, Zhao et al. pro-
posed a framework for Auditory Information Seeking Actions 
(AISAs) [79]. The framework includes Gist, Navigate, Filter, and 
Details-on-Demand. Gist is the frst step in obtaining an overview 
of the data, to guide further exploration. In Zhao et al.’s work, a 
common sonifcation exploration strategy used by BVI users to 
obtain a gist of georeferenced data was to break down the data into 
smaller ranges and then sweep each range in a consistent order to 
systematically build an overview [79]. This strategy was more efec-
tive than repeated sweeps of the entire map and could be explained 
by the limited working memory capacity with auditory stimuli, 
especially when investigating complex data. Brown et al. also re-
ported sighted users’ systematic isolation of specifc regions was 
helpful in understanding sonifed line graphs [11]. Similar to other 
kinds of graphics, with sonifcation, good strategies also need to be 
learned [33, 79]. Working with BVI novices unfamiliar with soni-
fcation, Zhao recommended training on specifc auditory sweep 
and pattern recognition strategies [79]. For casual data consump-
tion on the web, providing such one-on-one training on successful 
exploratory strategies might not be as feasible. In this work, we 
investigate audio data narratives to improve communication and 
interpretation of auditory graphs through sonifcation. A narrative 
can help contextualize the information and support the user in their 
interpretation. 

3 CO-DESIGN WORKSHOPS 
To identify important considerations when creating an audio data 
narrative for data communication using sonifcation and descrip-
tions, we conducted two virtual workshops with BVI co-designers 
who were primarily screen reader users. Our goal was to work 
with co-designers to lead discussions and generate ideas on how 
we might make auditory graphs easier to navigate and interpret 
through a narrative. All workshops were conducted online through 
the Zoom video conferencing platform and lasted between 90 and 
120 minutes. 

3.1 Participants 
Four co-designers were recruited through snowball sampling to par-
ticipate in two recurrent group design workshops. All co-designers 
were working professionals residing in the United States, with an in-
terest in data accessibility. All co-designers identifed as blind and/or 
visually impaired and used screen readers as their primary assistive 
technology. The median age was 26.5 (SD = 17.9, ranдe = 40). 
Two co-designers had a strong preference for tactile graphics when 
consuming data graphics while the remaining two co-designers had 
a stronger preference for audio-based methods such as sonifcation. 
Additionally, two members of the research team participated as 
facilitators during both workshops. One facilitator was sighted, and 

the second facilitator identifes as blind and uses a screen reader as 
their primary assistive technology. 

3.2 Materials & Methods 
Before the workshops, the research team met with each co-designer 
individually to explain the goal of the co-design workshops, answer 
any questions, and understand any accessibility needs. Physical 
and digital materials that were used to support diferent workshop 
activities were shared with all co-designers one week in advance. 
Physical materials were mailed to co-designers; these included 
tactile graphics, tactile prototyping materials (e.g., wikki stix, pipe 
cleaners). Digital materials included a detailed agenda for each 
workshop, background information, and sample datasets. For each 
dataset, we provided three diferent data representations: a textual 
description, a tabular representation and a sonifed representation. 

The frst workshop focused on the brainstorming and ideation 
stages of the design process. The goal of the activities for this work-
shop were to encourage conversation about diferent available data 
representations (tactile, speech, and audio), discuss preferences and 
tradeofs between representation types, and to formulate a list of 
guidelines for when each representation was useful or preferred. 
The workshop began with co-designers individually familiarizing 
and exploring each of fve diferent datasets provided through both 
physical (tactile graphic) and digital representations (tabular data 
and graph sonifcation). Co-designers were encouraged to think 
about the story behind the data and how they might share that 
story to their peers, including non-experts. After individual explo-
ration participants discussed their insights as a group. Facilitators 
prompted questions for users to refect on information available 
with each of the diferent data representations and co-designers’ 
preferences based on what they were interested in learning from the 
data. The workshop concluded with a brainstorming activity where 
facilitators prompted co-designers to propose prototype ideas to 
improve the sonifcation representation. In addition to the materi-
als provided, some co-designers made use of additional software 
tools: Audacity (audio-editing tool), the SAS Graphics Accelerator 
[62], Desmos graphing calculator [18] to explore prototypes of the 
proposed ideas. Throughout the discussions between participants, 
the facilitator took notes and at the end shared a collective sum-
mary of prototype design suggestions based on the co-designers’ 
feedback. We include sample prototypes from the workshops in 
Supplementary Materials. 

Between the frst and second workshops, the research team gen-
erated prototype alternatives that were discussed in the frst work-
shop. Continuing the conversation over email, facilitators provided 
a summary of what was learned from the workshop and answers 
to any of co-designers’ questions that could not be answered at 
the time of the workshop. The second workshop focused on the 
prototyping stage of the design process. The workshop focused 
on critiquing the diferent prototype probes that were generated 
from the frst workshop and prompting co-designers to suggest any 
improvements. The workshop again concluded with a summary of 
the main insights learned and discussion of remaining questions. 
After the workshop, facilitators transcribed observation notes and 
meeting recordings from both workshops. Open coding was used 
to organize the data and identify common fndings. 
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3.3 Observations & Findings 
Prototypes generated from the workshops primarily explored the 
use of data sonifcation and speech narration. Observations from 
the workshops point to important design considerations. When 
exploring a complex dataset, co-designers found it most helpful to 
break down exploration of the graph sonifcation by segments (F1). 
When sharing dataset insights with the group, co-designers would 
provide contextual information verbally (e.g., axis values, trend 
shape) and play smaller relevant segments of the sonifcation. This 
exploration strategy, similarly, discussed in prior work with both 
BVI and sighted users [11, 79], was described by co-designers as 
being helpful for “keeping track of how far along the time-series I am 
at any given moment”. With simpler datasets that conveyed fewer 
trend reversals or that were cyclical “with no dramatic changes”, 
co-designers suggested “just play the whole series without a break... 
You can keep track of where you are in the series”. The number of 
trend reversals as well as number of data points has been reported 
in prior sonifcation studies as increasing complexity and impacting 
global integration [15, 54]. 

Co-designers cautioned on maintaining a balance between too 
many and too few segments (F2); with co-designers suggesting, 
“determining what length of time a person can retain in memory”. 
Regarding the content of each segment, co-designers suggested the 
segment should either help identify relevant patterns in the audio 
or provide a systematic breakdown by time periods depending on 
the purpose of the visualization (F3). 

In combining sonifcation with descriptions, co-designers em-
phasized the need for descriptions always preceding any presenta-
tion of the audio (F4), “I feel strongly that the audio [sonifcation] 
should never precede the description... otherwise, it’s like looking 
at a graph with no markers on it.” Co-designers described the nar-
ration as helpful for creating an expectation before listening to 
the audio [33], “for explaining, identifying specifc values that are 
signifcant, or making a comment about the general pattern and the 
signifcance of it”. Co-designers also strongly suggested avoiding 
any overlap between the speech and sonifcation (F5). Overlapping 
of the narration with sonifcation was described as increasing the 
mental demand for what to focus on, but perhaps at the cost of 
losing context. One co-designer suggested, overlap should only be 
used “if there isn’t anything interesting [that] you’re trying to call 
out within the series”. 

As investigated in prior work, co-designers also found it helpful 
to include rhythmic clicks or beats to mark passing of time along 
the x-axis [33] (F6). This was helpful for providing a more granular 
marking of time, in addition to the narrative segments. Co-designers 
had diferent preferences on sound characteristics (e.g., pitch range, 
timbre, tempo, etc.), suggesting that these characteristics would 
be better personalized by the user (F7). Though as discussed from 
prior work some ideal ranges have been reported for parameters 
such as tempo, pitch, and duration [12, 24] which can be helpful in 
providing a starting point for novice users. 

4 DESIGN PRINCIPLES FOR AUDIO DATA 
NARRATIVES 

We summarize takeaways from the co-design and their connection 
to prior work to defne audio data narratives for time-series data. 

An audio data narrative is composed of sonifcation segments and 
verbal descriptions. Given a time-series dataset, a data narrative 
should include the following: 

D1. The description segment precedes (and does not over-
lap) the data segment to provide context, structure and set 
the expectation for the upcoming data sequence. With audio, 
users’ interpretation is infuenced by the expectation created by con-
textual cues [1, 49]. Co-designers described the preceding speech 
as important to help guide their attention by setting the context for 
how to interpret the sounds. The description should avoid overlap-
ping with the sonifcation to mitigate mental load. 

D2. The structure of the description segment is consistent 
across the narrative and describes at minimum the start and 
end point for the upcoming data sonifcation segment. Addi-
tionally, the description can provide external context to explain the 
data or highlight key points in the upcoming segment. 

D3. The sonifcation segments maintain consistent trends, 
maintaining the rhythmic pattern. Co-designers grouped soni-
fcation segments based on minimal trend changes. In prior work, 
the number of trend reversals has also been suggested as the fun-
damental psychological unit in line graphs [15] as a higher number 
of trend reversals in a sequence impacts global integration [54]. 
Temporal resolution changes at the sub-milliseconds level are per-
ceived as pitch changes, while temporal changes at the sub-seconds 
level are perceived as rhythm [19]. The impact of trend reversals 
on graph comprehension has been attributed to rhythmic theory 
that patterned sequences of notes are comprehended more easily 
than less structured and random combinations [19]. 

D4. The narrative maintains a moderate number of over-
all segments. Users can focus on a limited number of items in the 
overall picture [1]. Too long of an auditory signal and too many 
trend reversals, increases the number of items to remember [15]. 
Based on our co-design fndings, providing too many segments 
could also impact workload by requiring the user to constantly 
switch attention between speech and non-speech sounds. 

D5. The sonifcation segments maintain a moderate dura-
tion. Sonifcation segments should be neither too short nor too 
long. Target identifcation in an auditory stream is mediated by 
top-down processes rather than bottom-up (pre-attentively) [22]. 
This means that buildup of trends from a stream of tones requires 
more time, compared to pre-attentive pitch changes in the order of 
milliseconds. Users need a few seconds (in order of 3 to 5 seconds) 
to perceive overall changes in rhythm [22]. With an auditory stream 
that is too short, it might be difcult to extract or understand the 
pattern in the data. Similarly, an auditory stream that is too long 
might exceed how much information can be held in working mem-
ory. Prior work has suggested keeping the duration of an auditory 
graph up to 10-12 seconds, with a duration per note of 50-10 msec 
[53]. 

5 GENERATING DATA NARRATIVES 
Findings from the co-design workshop suggested that data nar-
ratives could help BVI users better comprehend auditory graphs 
and lead to meaningful insights. To support our goal of providing 
up-to-date and accurate access to the data, we investigated how the 
process of generating the data narratives could be automated. 
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We pose the problem as a temporal segmentation problem, where 
our goal is, given a set of data points, fnd a narrative composed of 
speech and sonifcation segments. Driving the algorithm outcomes 
are heuristics based on the identifed design principles (Section 4). 
A heuristic approach to generating narratives, as opposed to a more 
data-driven approach, was more suitable since discussions in the 
co-design did not necessarily identify a ground truth. More impor-
tantly, a heuristic approach allows more customization as well as 
the possibility of easily defning and including additional heuristics 
depending on the application context being used. However, a disad-
vantage is that diferent heuristics might need to be investigated for 
diferent data visualization types whereas a data-driven approach 
could provide a more general solution. Here we limit our scope to 
single timeseries datasets. With the defned heuristics, we solve 
this optimization problem using dynamic programming. In the next 
subsections, we describe each step and how we defne the problem. 

5.1 Identifying Boundary Points 
To defne the narrative segments, we frst need to identify where 
a segment could begin and end. To identify candidate boundary 
points, we defne units (u1, . . . , un ), and use the Perceptually 
Important Points Algorithm (PIP), which provides a reduced set of 
points that most contribute to the overall shape of the time-series 
[25, 72]. Units are a set of points in the data that cannot be broken 
down further (ui = [pi , pi+1]). Since we want to keep together 
points that form a consistent pattern, these points are the most 
likely to be the points where a segment begins or ends. 

5.2 Data Segmentation with Dynamic 
Programming 

Next, we want to combine units into segments (s1, . . . , sm ) that 
compose an optimal narrative (Nj ). Given n units (u1, . . . , un ), 
there are 2n possible subsets. To solve this problem, we defne cost 
functions based on principles identifed in Section 4 and solve this 
problem using dynamic programming [32]. An optimal narrative 
will be composed of a collection of segments which maximizes the 
cost function. 

For a given narrative composed of segments (Nj = s1, . . . , sm ), 
our algorithm identifes the optimal segment boundaries. Units 
are processed in order, and the cost of a segment (si = 
{uq , . . . ur , . . . ,us }) is evaluated against the cost of splitting the seg-
ment into smaller segments (si = {uq , . . . ur }, si+1 = {ur +1, . . . us }). 
The algorithm proceeds recursively, keeping track of the best cost 
as well as the optimal partial narrative. At the end, the optimal 
narrative will have the lowest cost. We defne three cost functions: 

C1. Consistency cost. To maintain segments with minimal trend 
reversals that maintain the rhythmic pattern in the sonifcation 
(D3), we defne a consistency cost proportional to the diference in 
angle between adjacent units [15]. 

mÕ� � 
Cconsistency Nj = f (si )

i=1 

s−1Õ� � 
f (si ) = f {uq , . . . ,us } = д(uk , uk+1)

k=1 

� 
0, i f ∠ (uk ) − ∠ (uk+1) < β1д (uk , uk+1) = 
∠ (uk ) − ∠ (uk+1) , otherwise 

where β1 = π /9. 
C2. Duration cost. A narrative maintains a moderate duration 

for each segment (D5), not too short (at least 3 seconds) and not 
too long (ideally within 12 seconds). We calculate the duration of 
a given segment (dur (si )) based on the number of data points and 
sonifcation tempo. Extremely short segments (below Tlower ) are 
strongly penalized since we do not want a segment close to zero. 
For segments above Tupper , we include a linear increase in cost 
since we do not have a strict cut-of. For segments in the ideal range 
between Tlower and Tupper , we defne a quadratic loss function. 

mÕ� � 
Cdur ation Nj = Cdur ation (si )

i=1 11−dur (si ) + Tl ower , i f dur (si ) ≤ Tlower  dur (si ) − 0.5Tupper + 1.5Tlower 
�2β2 × ,

Cduration (si ) = 
i f Tlower < dur (si ) < Tupper 4 ( dur (si ) − 10) , i f dur (si ) ≥ Tupper 

where Tlower = 3, Tupper = 12, and β2 = 0.075. 
C3. Number of segments cost. To prioritize a moderate number 

of segments (num(N )) in a narrative (N ) between nlower = 2, and 
nupper = 4 (D4), we use a quadratic loss function with a minimum 
at 3. At minimum we want one segment, so anything below 1 is 
strongly penalized. �� � � �2 � �� � num Nj − 3 , i f num Nj ≥ 1 

=Cnumber Nj 
∞, otherwise 

Final cost. The fnal cost of a narrative (Nj ) is the weighted as the 
sum of the individual cost functions (C1, C2, C3). For the datasets 
shown in Figure 2, we use the following hyperparameter values: 
αconsistency = 0.05, αnumber = 2.0, and αduration = 1.0. We 
chose these parameters through experimentation.� � � � 

Ctotal Nj = αconsistency × Cconsistency Nj� � 
+ αdur ation × Cdur ation� N�j 
+ αnumber × Cnumber Nj 

Applying this segmentation process, Figure 2 shows the results 
for four diferent datasets. The simple datasets have 115 and 120 
data points while the complex datasets have 270 and 281 data points. 
Appendix Figure A.1 provides additional samples generated with 
our approach. 

5.3 Sonifcation Parameters and Generation 
With the identifed optimal segments, the next step is generating 
the sonifcation. For the sonifcation, we use a frequency mapping 
paradigm [53]. A piano sound font is used for the timbre, the pitch 
range is set between MIDI notes 30 to 127, and the tempo is set 
to 400 beats per minute [12]. We use a positive polarity mapping, 
such that the dataset maximum value corresponds to the maximum 
pitch frequency. 

5.4 Speech Generation 
With identifed sonifcation data segments, the last step is determin-
ing the descriptions which precede each data segment (si ) in the 
narrative (D1). The frst description segment always contains the 
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Figure 2: Sample datasets and the segments identifed by the algorithm (marked by dashed lines). These datasets were used in 
the evaluation and included a) Simple datasets with two segments, and b) Complex datasets with four segments. 

Figure 3: Our evaluation included two conditions. a) In the 
Control condition, the verbal description was presented all 
together in one segment followed by one complete segment 
of the corresponding data sonifcation. b) In the Narrative 
condition, the verbal description was interleaved between 
segments of the corresponding data sonifcation. 

dataset title and a legend that provides context to the maximum and 
minimum pitch and its corresponding value in the dataset (Figure 
1). To compose the description preceding each segment, we use 
sentence templates. The speech descriptions provide at minimum 
the value of the start and end points (D2). Additionally, if there is 
a maxima or minima point in the upcoming segment, we include 
it in the description. The following are two representative speech 
templates: 

• In [time-period-start], [dimension] was [value-start] and 
then it [slope (increased / decreased)] to [value-end] in [time-
period-end]. 

• In [time-period-start], [dimension] was [value-start] and 
then it [slope (increased / decreased)] to all-time [high / low] 
of [value-end] in [time-period-end]. 

Finally, the sonifcation and description segments are stitched 
together in sequential order. Figure 1 shows the narrative output for 
a dataset on COVID positivity rate. Additional samples are provided 
in Appendix 1. 

6 EVALUATION 
We conducted a study to understand the benefts and limitations of 
data sonifcation narratives in contrast to the standard approach 
of presenting auditory graphs through sonifcation. We were inter-
ested on whether data narratives help users better understand the 
data tones and thus infuence the kind of insights users gain. 

6.1 Experimental Conditions 
The study was conducted as a repeated measures 2x2 within-
subjects study design. A balanced Latin square design was used to 
reduce order efects. Participants were presented with an auditory 
graphic in one of two ways (Factor 1). In the Control condition 
(Figure 3a), the verbal description was presented all together in one 
segment followed by one complete segment of the corresponding 
data sonifcation. In the Narrative condition (Figure 3b), the verbal 
description was interleaved between segments of the correspond-
ing data sonifcation. This condition evaluated the output from the 
generation pipeline described in Section 5. 

In addition to varying how the information was presented, we 
included datasets from two levels of varying complexity (Factor 
2). The datasets used for the study are shown in Figure 2. In the 
Narrative condition, the simple datasets included two segments (115 
and 120 data points), while the complex case included four segments 
(270 and 281 data points). The datasets varied in the number of 
points and trend reversals present, which prior sonifcation studies 
have reported as factors that impact global integration [15, 54]. 

6.2 Measures 
6.2.1 Data insights (quantity, type & quality). To assess what users 
understood from a gist of the data representation, we asked users 
to provide a description of the overall trend(s) or pattern(s) in the 
data and what insights they gained from the data [55]. Prior insight-
based evaluations have defned a data insight as “an individual 
observation about the data by the participant, a unit of discovery” 
[61]. For an initial gist, we asked users to provide an answer after 
listening to the representation no more than two times. 

Additionally, we were interested in making the distinction 
whether users were simply recalling and repeating information 
given in the description or generating new insights based on what 
they understood from both the description and the sonifcation. 
Thus, we also coded the quality of an insight as Exact (information 
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provided in the description) or Inferred (not provided in the descrip-
tion). Our assessment protocol is similar to that used by Carswell 
et al. [15] where participant descriptions are used to assess local 
and global integration of sonifed features in a line graph. 

6.2.2 Comprehension. To assess the efectiveness of each repre-
sentation in specifc tasks, we used comprehension questions based 
on common tasks with time-oriented data [4]. In total we asked 
four comprehension questions per dataset, and we distinguished be-
tween elementary tasks (direct lookup, indirect lookup) and synop-
tic tasks (pattern lookup, pattern comparison) [3]. The elementary 
task questions related to individual data values and can be answered 
from an understanding of just the descriptions. The synoptic tasks 
require consideration of sets of values of data, where descriptions 
are not sufcient for answering. For each question, we recorded 
accuracy and time. 

6.2.3 Self-reported ratings & qualitative comments. To assess cog-
nitive load in understanding the information, we measured users’ 
self-perceived mental efort, on a 9-point Paas Likert scale [57]. Ad-
ditionally, after conclusion of all trials, we asked users’ open-ended 
questions on their strategies, experience, and preferences. 

6.3 Procedure 
The study was conducted entirely online using the Zoom videocon-
ferencing platform and the Qualtrics survey platform was used for 
data collection. Studies were scheduled to last up to 90 minutes. On 
average the study lasted 63.5 minutes (SD = 20.2). 

After obtaining participation consent, participants were intro-
duced to the study procedures and were provided a brief background 
explaining what data sonifcation is. Participants were told they 
would be asked to listen to diferent data representations in which 
the information might be presented diferently, and then asked 
to answer a number of questions. To progress through the study, 
participants opened a Qualtrics survey which contained all the 
instructions, trial materials and questions. Participants accessed 
the survey using their preferred browser. An experimenter was 
present during the study to remotely guided participants through 
the survey. 

Participants completed one practice trial followed by four experi-
mental trials, each with varying Condition (Control, Narrative) and 
dataset Complexity (Simple, Complex). For all trials, the data repre-
sentations were accessible as audio clips using participants’ native 
browser media player. The practice trial was used to familiarize 
participants with the study procedure, the survey mechanics, and 
the data representations, and to answer any questions that might 
arise. 

A trial began by asking participants to entirely listen to the data 
representation to gain a general gist of the information. Participants 
could listen to the audio up to two times. After this initial listen, 
based on their recollection, participants provided a few sentences 
describing the representation and insights or takeaways learned, 
and completed a set of Likert ratings assessing task mental efort. 
Participants also rated the accuracy and completeness of their re-
sponses. In the second half of the trial participants answered four 
specifc comprehension questions. For these questions, participants 
could re-visit the representation as many times as they wanted. 

Participants were told they would be assessed based on both the 
accuracy and timeliness of their responses. This general procedure 
was repeated for each of the four trials plus the practice trial. After 
completion of the practice and experimental trials, participants 
answered open ended questions. 

6.4 Hypotheses 
In connection with our study goals and motivated by prior work, 
we formulated the following study hypotheses: 

H1. The narrative representation helps users gain a more 
complete gist of the data integrating both description and 
sonifcation. In the narrative condition, descriptions are provided 
closer to the relevant sonifcation segment. Co-designers described 
this facilitated identifying important patterns in the sonifcation 
and grounding them with values provided in the description. For 
the Narrative condition, we expect this will result in overall more 
insights gained from the data. Furthermore, we expect insights will 
rely more on the information contained in both the description and 
sonifcation. While for the non-narrative (Control) condition, we 
expect users will have less insights and rely more on the descrip-
tions alone resulting from a less comprehensive understanding of 
the sonifcation. We expect this to also refect in the comprehen-
sion questions. In the Narrative condition, participants will be able 
to more efciently recall and answer questions that require un-
derstanding of the sonifcation (synoptic tasks). Regarding dataset 
Complexity, we expect Complex datasets will result in a higher 
overall number of insights since there is naturally more informa-
tion compared to the Simple datasets. However, we expect Simple 
datasets to have a higher proportion of inferred insights since they 
are easier to comprehend. 

H2. Identifying relevant segments in the sonifcation will 
reduce mental efort. Prior work investigating BVI users’ explo-
ration strategies of data sonifcation displays have reported one 
strategy to gain a gist of the data entails breaking down the seg-
ment to better re-investigate and identify relevant patterns [79]. 
We observed this to be especially helpful to co-designers when 
the dataset was complex with several trend reversals. In the Nar-
rative condition, relevant patterns are identifed and presented to 
the user as individual segments, thus we expect this will reduce 
user’s mental efort in having to do the work in identifying these 
segments. 

6.5 Participants 
Participants were recruited through announcements sent to local 
and national blindness organization mailing lists. Participant eli-
gibility included being at least 18 years old, residing in the United 
States, identifying as blind and/or visually impaired, and being a 
primarily screen reader user. In total, 16 participants took part in 
this study. Ten participants identifed as woman and six participants 
identifed as man. The median age was 29 (SD = 15.3, ranдe = 50). 
The primary screen reader used for access was JAWS (9/16), fol-
lowed by VoiceOver (5/16), and NVDA (2/16). All participants rated 
their screen reader expertise highly (x̄ = 5, SD = 0.97) on a scale 
from 1 (Not familiar at all) to 6 (Expert). Participants rated their ex-
pertise interpreting data through tactile charts (x̄ = 3.1, SD = 1.5) 
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Figure 4: The Narrative condition had a signifcantly higher 
number of insights compared to the Control condition. 
There were no interaction efects with dataset Complexity. 
Error bars show 95% bootstrap confdence intervals. 

slightly higher than their expertise with auditory graphs (x̄ = 2.2, 
SD = 0.94) on a scale from 1 (Not familiar at all) to 6 (Expert). 

6.6 Data Analysis 
To code participants’ insights and descriptions, we developed a 
codebook using the fact taxonomy described by Law et al. [43] 
and additional categories described in Vande Moere et al.’s coding 
process [76]. Our codebook categorized an insight according to 
the following: Fact type (value, trend, range, extreme, compound 
fact), Emotional, Rational, and Sound characteristics (pitch, rate). 
This codebook was initially defned based on fve pilot studies and 
then applied to coding the evaluation data from the sixteen partic-
ipants. To verify the codebook applicability, two members of the 
research team frst coded a portion of the data ( 21.7%, 208/957 state-
ments). Before resolving disagreements, we calculated inter-rater 
reliability (IRR) as the percentage of agreement between raters as 
87.5% (182/208), which indicated reasonable agreement [31]. Raters 
jointly discussed and resolved disagreements and then coded the 
remaining data independently. Appendix 2.1 defnes our codebook 
and provides examples from the data for each category. 

6.7 Results 
We present results from our quantitative analysis followed by fnd-
ings from our qualitative analysis. 

6.7.1 Higher number and quality of data insights in Narrative con-
dition. Figure 4 shows the number of insights by Condition and 
Complexity. Likelihood ratio tests were used to test for the efects of 
Condition comparing a full model to a restrained model [58]. We ft 
a generalized linear mixed efects model, using a Poisson distribu-
tion, predicting the number of insights (Count). We included fxed 
efects for Condition (Narrative, Control), Complexity (Simplex, 
Complex), and their two-way interaction (Condition: Complexity), 
and a random intercept for each participant. 

We fnd a main efect of Condition on the number of insights 
provided by participants (β = 0.22, SE = 0.067, χ2(1) = 10.4, p = 

Figure 5: Condition had a signifcant efect on the propor-
tion of inferred insights with a higher likelihood of an in-
sight being inferred in the Narrative condition compared to 
the Control. Error bars show 95% bootstrap confdence inter-
vals. 

0.0013). The average number of insights is higher in the Narrative 
condition (x̄ = 15.4, SD = 6.5) compared to the Control condition 
(x̄ = 12.4, SD = 6.3). In the Narrative condition compared to the 
Control condition, while holding all other variables constant, we 
expect to have a rate 1.24 times greater in the number of insights 
provided (Table A.1). There was no signifcant interaction between 
Condition and dataset Complexity (β = −0.004, SE = 0.13, χ2(1) = 
0.0008, p = 0.98). 

Figure 5 shows the proportion of Inferred insights by Condition 
and Complexity. Using the same analysis procedure as before, we 
ft a mixed efects logistic regression, predicting the proportion 
of inferred insights. We fnd a main efect of Condition on the 
proportion of inferred insights provided (β = 0.78, SE = 0.23, 
χ2(1) = 8.15, p = 0.004). The proportion of inferred insights is 
signifcantly higher in the Narrative condition (x̄ = 0.33, SD = 0.18) 
compared to the Control (x̄ = 0.21, SD = 0.16). In the Narrative 
condition, while holding all other variables constant, the odds are 
1.56 times higher that an insight is inferred compared to the Control 
(Table A.3). 

There was also a marginally signifcant interaction between 
Condition and dataset Complexity (β = −0.60, SE = 0.32, χ2(1) = 
3.65, p = 0.05). Simultaneous pairwise comparisons, adjusting for p-
values using Tukey’s HSD test indicated the proportion of insights 
in the Control condition was signifcantly diferent between the 
Simple and Complex datasets (Z = −1.03, p = 0.0002) but not 
between the Narrative condition Simple and Complex datasets 
(Z = −0.174, p = 0.13). There were also signifcant diferences 
between the Control Complex and Narrative Complex (Z = −0.77, 
p = 0.0060) and the Control Complex and Narrative Simple (Z = 
−1.21, p < 0.0001). Table A.4 lists all the contrasts. 

Figure 6 shows the distribution of insights by categories. The 
main distinctions between the Narrative and Control conditions are 
the higher count of Compound facts and facts describing Trends 
and Values (X and Y). 
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Figure 6: The number of facts that are compound and that describe Trends, and X-Y Values is higher in the Narrative condition 
compared to the Control. 

Figure 7: On average, participants were more inefcient an-
swering questions in the Control condition compared to the 
Narrative. A higher IES indicates completion is more inef-
fcient. The pattern lookup questions, which require under-
standing of both the description and sonifcation, were most 
inefcient. Error bars show 95% confdence intervals. 

6.7.2 Higher eficiency in the Narrative condition. To assess the ef-
fect of Condition on performance in the comprehension questions, 
we computed the Inverse Efciency Score (IES) as the time spent 
answering a comprehension question divided by the accuracy [81]. 
Since participants may focus on generating an accurate response 
while sacrifcing time, the IES provides us a combined score to 
assess performance. A higher IES means completion is more inef-
fcient. Following the same analysis procedure as before, we ft a 
generalized mixed efects model using a Gamma distribution and 
identity link function, predicting IES (continuous). We included 

fxed efects for Condition, Complexity and Question type (direct 
lookup, indirect lookup, pattern comparison, pattern lookup), as 
well as a random intercept for each participant. We use a Gamma 
distribution [45], since inspection of our data revealed a non-normal 
distribution. 

Figure 7 shows the average IES score and 95% bootstrap con-
fdence intervals. Controlling for dataset Complexity and Ques-
tion type, we fnd a signifcant interaction between Condition and 
Question type (βindir ect _lookup = −3.51, SEindir ect _lookup = 
1.54, βpattern_lookup = −11.94, SEpttern_lookup = 4.3, 
βpatter n_compar ison = −0.61, SEpatter n_compar ison = 4.3, 
χ2(3) = 12.90, p = 0.004865). On average, participants were more 
inefcient at responding comprehension questions in the Control 
condition (x̄ = 17.89, SD = 28.8) compared to the Narrative con-
dition (x̄ = 10.81, SD = 19.73). Pairwise contrasts on Condition
with Holm-Šidák correction indicated these diferences were signif-
icantly diferent depending on the Question type. For the pattern 
lookup questions (Z = 11.66, p = 0.0066), performance was more ef-
fcient in the Narrative condition (x̄ = 15.45, SD = 24.03) compared 
to the Control (x̄ = 32.77, SD = 41.38). An example of this question 
asked, “When was the rate of change the fastest?”. Correctly answer-
ing these synoptic questions requires integrating an understanding 
of both the description and sonifcation. Smaller diferences were 
also found for the indirect lookup questions (Z = 3.23, p = 0.0269), 
where performance was slightly better in the Narrative condition 
(x̄ = 10.28, SD = 16.27) compared to the Control (x̄ = 13.13, 
SD = 18.13). Table A.6 lists all the contrasts. 

6.7.3 High mental efort across conditions. Participants’ self-
reported rating for the mental efort required to understand each 
representation and complete the tasks was high across both condi-
tions. Figure 8 shows Likert responses on a 9-point Paas scale (very 
very high mental efort to very very low mental efort). In the Control 
condition the average self-reported mental efort (x̄ = 6.1, M = 6 
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Figure 8: Participants reported high mental efort in both the Narrative and Control conditions. 

SD = 1.31) was higher than in the Narrative condition (x̄ = 5.8, 
M = 6 SD = 1.56). 80% of participants reported mental efort in 
the very high to neither high nor low range compared to 70% in 
the Narrative condition. A mixed efects model analysis predicting 
mental efort and controlling for Participant, did not reveal signif-
cant diferences between these conditions (β = −0.25, SE = 0.28, 
χ2(1) = 0.81, p = 0.368). However, some qualitative comments 
from participants suggested the Narrative condition required less 
efort by the making the information easier to digest (P4, P7, P8, 
P12, P13) and recall (P6, P9). We discuss users’ qualitative feedback 
in the next sections. 

6.7.4 Benefits of integrating description and sonification. Overall, 
regardless of study condition, all participants were strongly enthu-
siastic about the complementing benefts of using structured de-
scriptions and sonifcation. Participants described both “re-enforced 
[each] other” (P6) and provided complementing details (P1, P5, P7, 
P9, P10, P11, P12, P13). Participants described the sonifcation pro-
vided an easier and better understanding of the trends, verifying 
what is usually verbally described (P8, P12, P15, P16). Other par-
ticipants described the sonifcation as more memorable than just 
hearing a description (P6, P11, P12). P5 described the benefts of 
both together saying “I think the sound and description were really 
good... It’s a verifcation because with the data you can only focus 
on so much information but the change in pitch clarifes that. And I 
think it’s really helpful both together.” 

Participants also compared hearing the data narratives to their 
typical experience encountering descriptions. P11 for example, de-
scribed how “listening to the tones is easier to grasp and hold in 
memory” compared to descriptions they typically encounter. This 
could be indicative of the higher cognitive load imposed by text-
based representations, as opposed to rendering the information 
through a direct perceptual interface, when accessing spatial graph-
ics [29]. P7 described how usually when accessing NPR, they read 
“the captions and data but it doesn’t really give me a whole picture” 
compared to having access to both the description and sonifca-
tion. One participant (P2), however, did not see value in using the 
sonifcation and asked, “if the audio was describing the rates and 
the percentage and all that stuf, what is the purpose of having the 
sound?”. 

6.7.5 Diferent understanding between the Narrative and Control 
conditions. For the Narrative condition, participants described be-
ing able to better comprehend the information in more detail, espe-
cially the individual trends when compared to the Control condition 
(P4, P8, P9, P10, P12, P13, P16). P12 emphasized this saying, “slice it 
up and then give it to me so I can understand the exact shape of the 
data.” These observations explain some of the quantitative fndings 
showing how participants in the Narrative condition performed 
better in the synoptic tasks (Figure 7) and provided more facts 
related to trends (Figure 6). Participants described the Narrative 
allowed them to better keep track of where events were happening 
in the graph which may also be indicative of the higher number of 
data facts involving value-x (Figure 6). Several participants qual-
ifed their preference for the Narrative representation depending 
on the dataset and context where they might be consuming the 
information (P1, P3, P4, P7, P10, P12, P13, P16). Participants de-
scribed the Narrative as being most helpful for complex datasets 
with “many data points and difering trends” (P16) but less necessary 
for the simpler datasets. These are also refected in the quantitative 
results (Figure 5) and support prior work investigating parameters, 
including data complexity, which may impact interpretation of an 
auditory graphic [54]. 

While the Narrative allowed participants to better contextualize 
the information and make more inferences based on the data sonif-
cation, participants described how it provided a lesser appreciation 
of the overall sonifcation (P4, P10). Despite representations used in 
both the Narrative and Control condition having the same duration, 
some participants perceived the Narrative as longer in duration. 
P4 described it as, “the graph of the overall would be much slower 
but I could comprehend it more”. Whereas for the Control condition, 
participants described their understanding as more general, “more 
of a big trend understanding... so I can say it was high or low but 
there was no accurate way to gauge” (P4). 

6.7.6 Adjusting the narrative based on the task & context. After 
a general gist of the data, several participants were interested in 
accessing specifc details in the data or making adjustments to 
the narrative (P10, P11, P12, P14, P16). For example, participants 
wanted to know more exact dates for events they had picked up from 
the audio or wanted to reduce the narrative to a specifc segment 
to better appreciate the changes (P13, P16). Several participants 
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also wanted to adjust some of the audio parameters such as the 
speed, timbre, and interval between rhythmic clicks (P10, P11, P12, 
P14, P16). Additionally, some participants noted the benefts of the 
Narrative versus Control for use in diferent contexts (P1, P3, P4, P10, 
P13, P16). For example, P4 described the sonifcation would be useful 
for “general discussion” while the narrative might be more useful 
for “data analysis or political science class”. These were similar to 
discussions with co-designers on adjusting the narrative segments 
and number based on diferent information-seeking goals. A few 
participants emphasized that while they had specifc preferences, 
it was important to let the person choose (P3, P9, P10). 

7 DISCUSSION & FUTURE WORK 

7.1 For complex datasets, the audio narrative 
representation helps users gain a more 
complete gist 

The evaluation results provide evidence supporting our frst hy-
pothesis that the narrative representation helps users gain a more 
complete gist of the data integrating both the description and sonif-
cation. Results show that with the narrative, participants draw more 
insights from the sonifcation forming their own interpretation of 
the data (inferred insights) compared to repeating information ex-
plicitly provided in the description. This is particularly the case 
when the dataset is complex. Results (Section 6.7.1) indicate that 
for a complex dataset, the Narrative condition resulted in a signif-
cantly higher proportion of inferred insights (x̄ = 0.30, SD = 0.20) 
compared to the Control condition (x̄ = 0.14, SD = 0.11). Whereas 
when the dataset was simple, the diference between the Narrative 
(x̄ = 0.36, SD = 0.16) and Control (x̄ = 0.30, SD = 0.18) was 
higher but not signifcant. Thus, we see that, especially with com-
plex datasets, audio data narratives can support users in drawing 
their own insights and gaining a more complete understanding of 
the data. 

Participants described in the Narrative condition they could gain 
a more detailed understanding, whereas in the Control, they de-
scribed their understanding as more general. Our narrative genera-
tion approach includes a heuristic that aims to minimize the number 
of trend reversals contained in a sonifcation segment which might 
explain some of participants’ responses. In a study assessing global 
integration of sonifed line graphs, Carswell et al. reported that 
interpreting more complex graphs (higher data density and trend 
reversals) resulted in more global insights at the expense of local de-
tail [15]. These diferences indicate the Narrative could be adjusted 
depending on the dataset complexity. In this evaluation, we consid-
ered complexity based on the number of trend reversals and data 
points. Investigating additional factors that might impact complex-
ity in interpreting an auditory graphics such as noise, symmetry, 
and variance might also be important to consider [15, 54]. 

7.2 Reducing the high cognitive load 
One downside of our investigated approach is that across conditions, 
participants self-reported high mental efort (M = 6 on a scale from 
1 to 9). We initially hypothesized the Narrative condition would 
result in lower cognitive load since the narrative helps identify and 
segment relevant patterns in the sonifcation. However, participants’ 

self-reported ratings for mental efort were consistently high and 
no signifcant diferences were observed between conditions. One 
participant attributed this to the novelty of using sonifcation. P12 
explained that listening to verbal information is “very common... so 
it doesn’t necessarily require high levels of concentration” whereas 
the “sonifcation is such a new way of representing information” it 
requires conscious attention to “to combine all the pieces”. Exploring 
other complementing modalities such as haptics, might help lessen 
the auditory load and reduce users’ cognitive load [78]. 

Future studies could also investigate whether repeated exposure 
and greater familiarity from users could reduce the high mental load. 
Though not a requirement for the study, all participants reported 
their expertise in using audio graphs as relatively low (x̄ = 2.2, 
on a scale from Not familiar at all [1] to Expert [6]). Nonetheless, 
with a short introduction and one practice trial, we found most 
participants were able to gain a comprehensive gist of the data. 
Providing more ways for users to directly interact with the audio 
graph could also help reduce the high efort required. In our study, 
we focused on understanding the benefts of the representation 
itself and thus ofered limited interaction techniques. We discuss 
further interactions in the next section. 

7.3 Exploring additional interactions 
In our study, we used real world datasets of relevance and several 
participants were enthusiastic about being able to understand the 
data at greater depth when compared to access through typical 
news channels with just image descriptions or tabular data. All 
participants were generally enthusiastic about the use of data soni-
fcation to complement typical descriptions available with data 
visualizations. Participants described their potential benefts in pro-
viding more comprehensive access to data representations, being 
able to quickly understand trends, and being able to verify informa-
tion provided through descriptions. In eforts to address the data 
accessibility gap [65, 66], data sonifcation could be more widely 
integrated with existing image descriptions for data-driven content 
on the web. The work on data narratives with visual graphics is com-
paratively extensive. We believe this work demonstrates there are 
ample research opportunities in similarly extending data narrative 
patterns and techniques to the auditory domain. 

Most evaluation participants also had interest in gaining a greater 
understanding of specifc events in the data, as well as having ex-
ternal context that might explain the data. Co-designers had simi-
lar interests, emphasizing opportunities for the data narratives to 
be more engaging by including relevant external context. In our 
approach, no external context was included in the descriptions pro-
vided. Instead at minimum the description just provided the start 
and end point values of a segment. Prior works with visual narra-
tives have investigated methods to automatically include relevant 
annotations that tie external context to a data visualization [36, 69]. 
These methods could also be applied to audio data narratives to 
improve the descriptions provided and enhance the narrative by 
better explaining the data. 

Participants accessed the information through their native 
browser media player and had minimal interaction as they were 
asked to passively listen. Moreover, the interactions available with 
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the narrative were time-based manipulations (e.g., play/pause, time-
line scrolling). Exploring dynamic data visualizations and inter-
actions that support semantic navigation of the narrative might 
better support data-driven tasks and could address some of partici-
pants’ feedback discussed in the qualitative results (Section 6.7.6). 
Prior work has also suggested access to meaningful data insights 
is strongly reader-specifc [47]. Thus, dynamic visualizations that 
provide users the fexibility to adjust the narrative, both the sound 
characteristics as well as the details provided in the description, 
are promising areas of future work. The approach we investigated 
to generate the data narratives would be able to support these in-
teractions. Depending on diferent contexts or tasks, it would be 
possible to add or change heuristics to accommodate each need. 
Future work could investigate an authoring tool for data narratives 
and design parameters that might be adjustable by the user for use 
in diferent scenarios. 

8 LIMITATIONS 
There are limitations to consider in the work presented. On the 
algorithm side, we proposed a heuristics-based approach to gener-
ate audio data narratives. We discussed three cost functions and 
experimentally tuned parameters weighing each function. These 
parameters may vary depending on the dataset and may need to be 
adjusted accordingly. Other factors might also impact the weights 
used (e.g., data density). Furthermore, we implemented a small set 
of heuristics, but our approach could be extended to include other 
considerations discussed in the co-design workshops. For example, 
highlighting additional signifcant points such as outliers in the 
data. 

We investigated audio data narratives specifcally for communi-
cating time-series datasets with only one variable of interest. For 
multidimensional time-series datasets, the principles investigated 
could be extended. Investigating interaction methods, as discussed 
in Future Work (Section 7.3), would likely be critical when present-
ing multiple variables to mitigate further auditory load on the user. 
However, some of the principles we applied in our approach might 
not directly extend to communication of other types of commonly 
available data visualizations (e.g., scatter plot) and will instead 
require further investigation. 

In compliance with COVID-19 health guidance, we conducted 
all tasks remotely through a videoconferencing platform for both 
the co-design workshops and evaluation. Users accessed the audio 
representations with their own personal device; thus, we were not 
able to control for the audio quality or environmental noise in par-
ticipants’ location. Participants also had diferent prior background 
and experiences with data graphics and the order in which they 
were presented the diferent conditions might lead to some practice 
efects. We aimed to mitigate these efects in our study design and 
analysis by counterbalancing conditions as well as accounting for 
participant as a random efect in our statistical analysis modelling. 
We also used a qualitative insight analysis process to evaluate par-
ticipants fndings from the data. North et al. discusses some of the 
difculties with these methods for assessing visualizations, includ-
ing the greater variance in results compared to more controlled 
benchmark tasks [55]. 

In proposing audio data narratives to increase access to data, 
we focused on addressing the needs of BVI screen reader users. 
Our investigation was largely motivated by insights gained from 
formative work with four BVI co-designers. With a limited partici-
pant group, we might not capture the diverse accessibility needs 
in the broad continuum of visual conditions and abilities in this 
population [27]. Furthermore, while the approach we investigated 
may improve access for some users, it may be entirely inaccessi-
ble to others. Marriot et al. review the current state of access to 
visualization and discuss challenges across three disability groups 
(visual, cognitive, and motor impairments) that afect access to 
visualization [48]. Focusing on visual disabilities and relying on 
primarily auditory perception, our approach to data narratives may 
be inaccessible to others such as users with hearing loss or even 
make data interpretation more difcult for these users. Thus, in 
aiming for greater access and equity for all users, it is important to 
consider access in a more holistic context. 

9 CONCLUSION 
We have discussed one approach to improve consumption of au-
ditory graphs through audio data narratives which interleave seg-
ments of speech description and data sonifcation. We have focused 
specifcally on communicating time-series datasets. Informed by 
prior work and a series of co-design workshops with BVI users, we 
summarized design principles for audio data narratives. We applied 
these in the development of a heuristics-based algorithm for gen-
erating data narratives given a time-series dataset. To validate our 
approach, we conducted a user evaluation with sixteen BVI screen 
reader users exploring the benefts of data narratives in helping 
users gain insights from the data. Our evaluation compared diferent 
metrics between a Narrative condition with segments to a Control 
condition without segments. Our fndings show that consuming the 
information in narrative form helps BVI screen reader users gain 
more insights that integrate both description and sonifcation. Like 
consumption of visual data graphics, consumption of audio data 
graphics can also beneft from efective narrative techniques that 
help guide the reader. Our work shows that audio data narratives 
can support screen reader users in forming their own interpretation 
of the data, promoting independent and equitable access to data. 
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A APPENDICES 

A GENERATING DATA NARRATIVES 
We provide additional sample outputs created from our proposed 
generation algorithm described in Section 5. Datasets were collected 
from Our World in Data and the Federal Reserve Economic Data 
(FRED). 
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A.1 Description segments for the datasets 
shown in Figure 2 

2 shows samples of the data segmentation through dynamic pro-
gramming. Below are the accompanying descriptions for each seg-
ment, including the title and legend. 

Yearly CO2 Emission Rates in Finland. During the past 119 
years between 1860 and 1979, the emission rate was lowest in 
January 1860 at 0%. Represented by this sound [notes]. And was 
the highest in January 1979 at 11.4% [notes]. Tick sounds mark 
10-year intervals. In January 1860, emission rate was 0% and then 
it increased slowly to 0.2% in January 1945 [notes]. In January 1945, 
emission rate was 0.2% and then it increased sharply to all time 
high of 11.4% in January 1979 [notes]. 

Yearly Cigarette Sales. During the past 114 years between 1900 
and 2014, the sales was lowest in January 1900 at 0.1%. Represented 
by this sound [notes]. And was the highest in January 1961 at 11% 
[notes]. Tick sounds mark 10-year intervals. In January 1900, sales 
was 0.1% and then it increased slowly to all time high of 11.0% in 
January 1961 [notes]. In January 1961, sales was 11% and then it 
decreased slowly to 3.2% in January 2014 [notes]. 

COVID Positivity Rate in Peru. During the past year between 
February and November, the COVID rate was lowest in February 
2020 at 0%. Represented by this sound [notes]. And was the highest 
in April 2020 at 37.7% [notes]. Tick sounds mark monthly intervals. 
In February 2020, COVID rate was 0% and then it increased sharply 
to all time high of 37.7% in April [notes]. In April 2020, COVID 
rate was 37.7% and then it decreased more slowly to 28.2% in Au-
gust [notes]. In August 2020, COVID rate was 28.2% and then it 
decreased rapidly to 14.6% in September [notes]. In September 2020, 
COVID rate was 14.6% and then it decreased more slowly to 4.6% 
in November [notes]. 

COVID Positivity Rate in the US. During the past year be-
tween March and December, the COVID rate was highest in April 
2020 at 19.9%. Represented by this sound [notes]. And was the low-
est in June 2020 at 3.8% [notes]. Tick sounds mark monthly intervals. 
In March 2020, COVID rate was at 5.6%, when it sharply increased 
to all time high of 19.9% in April then decreased back to 3.8% in 
June [notes]. In June 2020, COVID rate was at 3.8%, then it increased 
slowly then decreased to 4.2% in September [notes]. In September 
2020, COVID rate was 4.2% and then it increased slowly to 9.7% in 
November [notes]. In November 2020, COVID rate was 9.7% and 
then it increased slowly to 12.0% in December 2020 [notes]. 

A.2 Results from the Segmentation Algorithm 
Figure A.1 shows additional datasets and results from the segmen-
tation algorithm. Segments are visually marked by both diferent 
colors and dashed lines. 

B EVALUATION 

B.1 Codebook 
A codebook was developed to code the insights participants pro-
vided during the evaluation. The codebook uses the fact taxonomy 
described by Law et al. [43] and additional categories described in 
Vande Moere et al.’s insight coding process [76]. There are three 

possible categories: data fact, rational, and emotional. These are 
defned as follows: 

• Rational: An observation that contains some reasoning, such 
as ‘why’ an event in the data might have occurred [76]. 

• Emotional: An observation that contains a subjective inter-
pretation [76]. 

• Data Fact: one of seven possible data descriptors (value [x, 
y], extrema [x, y], trend, range, outlier, compound fact, soni-
fcation fact) [43]. Sonifcation quality was a category specif-
ically added for our study and describes references to the 
sonifcation rate and/or pitch qualities. 

For each category, below provide examples collected from partici-
pants during the evaluation: 

1. Rational: 
• “In 1860 maybe they didn’t have many cars or the stuf that 
would put carbon because there was none.” 

• “Despite the fact that people know that there is a link be-
tween cancer and cigarette smoking, people still continue to 
do it, but the trends have really gone down.” 

• “It kind of did what I would expect that in the 50s and 60s 
people were smoking a lot, so it made sense for it to go up. 
But then it started going down because we learned about the 
dangers of nicotine and all that, so sales went back down.” 

• “I think that goes to show that was the time period we were 
under mandatory shelter in place and that seems to have 
been efective.” 

• “Contrary to popular belief COVID rates were in fact much 
lower during the shutdown.” 

2. Emotional: 
• “What surprised me was how long it took of the number of 
cases to decline.” 

• “I’m so glad that it has gotten lower because I hate cigarettes.” 
3. Value (X, Y): 
• “In November, it was 4.2%.” 
• “In December it went back to 12%.” 

4. Extrema (X, Y): 
• “It had some spikes with a high in 1961.” 
• “Then it drops to the all-time low in June at 3.4%.” 

5. Trend: 
• “For the frst few decades, I would say 3 or 4 decades, it was 
a very slow increase, or I guess barely any increase.” 

• “1945 onwards, for a short amount of period on the x-axis 
there is a sharp rise in the y coordinate.” 

• “There was a gradual increase starting from 0% in 1860 to 
0.2%.” 

6. Range: 
• “It was the COVID rate in the United States between April 
and December.” 

• “The data spanned from January of 1860 to January of 1979.” 
7. Compound fact: 
• “It decreased more rapidly between April and August of 2020 
compared to like between August and November.” 

• “Early on in the beginning it was a lot higher and decreased 
more slowly over time.” 
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Figure 9: Results from the segmentation through dynamic programming. 

• “How much faster it went up than it was able to come back 
down again overall.” 

• “I think it’s interesting that between 1945 and 1979, the rate 
jumps so quickly and in that 24-year span, as opposed to the 
115 years before that, and I would wonder why that was.” 

8. Sonifcation fact: 

• “The data consisted of sounds, piano sounds that were rising 
in pitch as the CO2 level increased.” 

• “The kick sounds represented every 10-year intervals.” 

B.2 Results: Poisson Mixed Efects Model 
Predicting the Number of Insights 

Likelihood ratio tests were used to test for the efects of Condition 
comparing a full model to a restrained model [58]. We ft a gen-
eralized linear mixed efects model, using a Poisson distribution, 
predicting the number of insights (Count). We included fxed efects 

for Condition (Narrative, Control), Complexity (Simplex, Complex), 
and their two-way interaction (Condition:Complexity), and a ran-
dom intercept for each participant. Table A.1 shows the regression 
model and estimates. Table A.2 lists the sample mean and SD. 

B.3 Results: Logistic Mixed Efects Model 
Predicting the Proportion of Inferred 
Insights 

Likelihood ratio tests were used to test for the efects of Condition 
comparing a full model to a restrained model [58]. We ft a logistic 
mixed efects regression, predicting the proportion of inferred in-
sights. We included fxed efects for Condition (Narrative, Control), 
Complexity (Simplex, Complex), and their two-way interaction 
(Condition: Complexity), and a random intercept for each partici-
pant. Table A.3 shows the regression model estimates. Table shows 
pairwise contrasts between Condition*Complexity calculated using 
Tukey’s HSD. Table A.5 lists the sample mean and SD. 
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Table 1: Mixed efects model predicting the count of insights 

Restrained Model Full Model 

Predictors Incidence Rate CI p Incidence Rate CI p 
(Intercept) 13.54 10.78–17.0 <0.001 12.08 9.51–15.34 <0.001 
Complexity [Simple] 0.90 0.79–1.02 0.11 0.90 0.79–1.02 0.11 
Condition [Narrative] 1.24 1.09–1.42 0.001 

Table 2: Mean and SD for the number of insights by condition and dataset complexity 

Condition Complexity Mean SD 

Control 

Narrative 

Complex 
Simple 
Complex 
Simple 

13.1 
11.8 
16.2 
14.6 

6.9 
5.7 
7.6 
5.4 

Table 3: Logistic mixed efects model predicting the proportion of inferred insights 

Restrained Model Full Model Full Model + Interaction 

Predictors Odds 
Ratio 

CI p Odds 
Ratio 

CI P Odds 
Ratio 

CI p 

(Intercept) 
Complexity 
Condition 

0.27 
1.94 

0.20–0.37 
1.43–2.61 

<0.001 
<0.001 

0.21 
1.94 
1.56 

0.14–0.30 
1.44–2.63 
1.15–2.12 

<0.001 
<0.001 
0.005 

0.17 
2.80 
2.17 

0.11–0.26 
1.72–4.57 
1.36–3.47 

<0.001 
<0.001 
0.001 

Interaction 0.55 0.29–1.02 0.057 

Table 4: Pairwise Contrast using Tukeys HSD for Condition: Complexity 

Contrast Estimate SE z-ratio P 

Control Complex – Narrative Complex -0.777 0.238 -3.266 0.0060 
Control Complex – Control Simple -1.031 0.249 -4.145 0.0002 
Control Complex – Narrative Simple -1.205 0.237 -5.084 <0.0001 
Narrative Complex – Control Simple -0.254 0.212 -1.199 0.6273 
Narrative Complex – Control Simple -0.428 0.197 -2.176 0.1298 
Control Simple – Narrative Simple -0.174 0.210 -0.827 0.8416 

B.4 Results: Linear Mixed Efects Model fxed efects for Condition, Complexity and Question type (direct 
Predicting Inverse Efciency Score lookup, indirect lookup, pattern comparison, pattern lookup), as 

well as a random intercept for each participant. We use a Gamma Likelihood ratio tests were used to test for the efects of Condi-
distribution [45], since inspection of our data revealed a non-normal tion comparing a full model to a restrained model [58]. We ft a 

generalized mixed efects model using a Gamma distribution and 
identity link function, predicting IES (continuous). We included 

Table 5: Mean and SD for the proportion of inferred insights by condition and dataset complexity 

Condition Complexity Mean SD 

Control 

Narrative 

Complex 
Simple 
Complex 
Simple 

0.14 
0.28 
0.30 
0.36 

0.11 
0.18 
0.21 
0.16 

https://1.09�1.42
https://0.79�1.02
https://0.79�1.02
https://9.51�15.34
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Table 6: Pairwise Contrasts with Holm-Šidák Correction for Condition: Question 

Question Condition Mean SE P 

Direct lookup Control 9.56 2.71 0.6805 

Narrative 9.84 2.71 
Indirect lookup Control 12.37 2.98 0.0269 

Narrative 9.14 2.69 
Pattern Comparison Control 9.88 2.71 0.6149 

Narrative 9.56 2.71 
Pattern Lookup Control 25.53 4.70 0.0066 

Narrative 13.87 3.03 

Table 7: Mean and SD for IES by condition and dataset question 

Condition Question Mean SD 

Control Direct lookup 8.5 12.4 
Indirect lookup 13.1 18.1 
Pattern comparison 13.8 27.4 
Pattern lookup 32.8 41.4 

Narrative Direct lookup 9.5 15.3 
Indirect lookup 10.3 16.3 
Pattern comparison 7.9 22.1 
Pattern lookup 15.4 24.0 

distribution. Pairwise contrasts on Condition with Holm-Šidák cor-
rection indicated diferences were signifcantly diferent depending 
on the Question type. Table A.6 lists the means and contrasts. 

Table A.7 lists the sample mean and SD. 
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